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Abstract. Conventionally, when we construct a quantum model, we must first know the
corresponding classical model. Applying the correspondence between the classical Poisson
brackets and the canonical commutator, we can find the canonical quantization condition.
Through the example given in this paper, we will find that it is not necessary to do this.
In the example, a Lagrangian operator is operator gauge invariant. After localization, in order to
keep the operator gauge invariance of the operator action, we must introduce a gauge potential.
The Euler–Lagrange equation of motion ofq gives the usual operator equation of motion, and
the gauge potentialB0 gives a constraint. This constraint is just the usual canonical quantization
condition.

In quantum mechanics and quantum field theory, in order to obtain a canonical commutation
relation, we need to know the corresponding classical model, since in the formalism of
quantum theory, the canonical commutation relation cannot be obtained automatically. So,
we must analyse the related classical model first, and try to deduce the Poisson brackets
between the canonical coordinate and the corresponding conjugated momentum. Then
applying the correspondence between the classical Poisson brackets and the canonical
commutation relation, we can find the canonical commutation relation. Therefore, in this
case, the canonical quantization condition is a quantum hypothesis. But can we obtain it
from a more fundamental principle?

This work was first done by Adler [1, 2], who developed a generalized quantum
dynamics. He used the concepts of operator-valued gauge transformations and a total trace
action—concepts which he introduced [1, 2, 3–5]; operator-valued gauge transformations
were also discussed by Mackey [6, 7]. Adler’s formalism gives the usual operator equations
of motion, with the canonical commutation relations emerging as constraints with the
operator gauge potential [1, 2]. His formalism is different from the usual quantum mechanics
and quantum field theory.

In this paper, we explore a quantum model with one bosonic degree of freedom. The
starting point of all discussions is that all the physical arguments, such asq, Lagrangian,
Hamiltonian and action etc, are operator-valued variables. In this model, the conventional
canonical quantization condition emerges as a constraint of the operator gauge potential.
This means that the conventional canonical quantization condition is automatically contained
in the structure of the model. So we need not use the conventional canonical procedure of
‘quantizing’ a related classical mechanics to obtain a quantum mechanical model. The goal
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of our constructing this model is to discuss how to spontaneously introduce the canonical
quantization condition in the formalism of the usual quantum theory.

Now we discuss a quantum harmonic oscillator. First, we simply discuss a model with
global unitary symmetry. Its Lagrangian is

L = 1

2

(
dq

dt

)2

− 1

2
ω2q2 (1)

where q and its time derivative dq/dt are quantum variables, andω is a c-number
parameter. We can easily prove that the above Lagrangian is invariant under the following
transformation (later we will prove it):

q → q ′ = Uq (2)

where the operatorU is unitary:

UU+ = 1 = U+U . (3)

Now, we localize the theory. In gauge theory, when a gauge transformation is localized,
in order to ensure the gauge invariance, we must introduce a gauge field. In the present
model, in order to ensure unitary invariance, we will introduce a gauge potentialB0. Then
the Lagrangian is changed into

L = 1
2(D0q)2 − 1

2ω2q2 − 1
2iB0 (4)

where D0 is a covariant derivative, whose definition is

D0q = (∂t + B0)q = dq

dt
+ B0q . (5)

From equation (4), equation (5) is the canonical momentum conjugate to the coordinateq.
The corresponding operator action is

S =
∫ ∞

−∞
L dt . (6)

We will prove that the operator action is invariant under the following transformations:

q → q ′ = U(t)q (7)

D0q → D′
0q

′ = U(t)D0q (8)

B0 → B ′
0 = U(t)B0U

+(t) − dU(t)

dt
U+(t) (9)

whereU(t) is a unitary operator:

U(t)U+(t) = 1 = U+(t)U(t) . (10)

Obviously, when we letU(t) be independent of timet and the gauge potentialB0

equal zero, the localized Lagrangian (4) is the same as the original Lagrangian (1), and the
present theory should be able to return to the original one. So a natural requirement is that
the dynamical variables in the present theory have similar properties to the corresponding
dynamical variables in the original theory. For example, in the original theory,q, dq/dt

and d2q/dt2 are Hermitian operators, so we require thatq, D0q and D0D0q be Hermitian
operators. The requirement of the Hermiticity ofq ′, D′

0q
′, L, D0q and D0D0q gives the

following five restrictions:

Uq = qU+ (11)

U(D0q) = (D0q)U+ (12)



A quantum model with one bosonic degree of freedom 7799

B+
0 = −B0 (13)

{q, B0} = 0 (14)

{D0q, B0} = 0 (15)

respectively, whereU = U(t) and the braces represent a conventional anti-commutator.
Applying the properties (11) and (12) ofU , it is easy to understand that the

transformations (7) and (8) have the form of operator gauge transformations. Resolve
U into the square of another operatorV . V must have the same properties of (11) and (12)
as that ofU . Therefore, equations (7) and (8), respectively, change into:

q → q ′ = V 2q = V qV + (16)

D0q → D′
0q

′ = V (D0q)V + . (17)

These are just the form of operator gauge transformations [1, 2, 6, 7].
Now we discuss the change of the LagrangianL under the transformations defined by

(7)–(9). Using relations (10)–(12), we can prove thatq2 and(D0q)2 are invariant:

q2 → q ′ 2 = qU+Uq = q2 . (18)

Similarly,

(D0q)2 → (D′
0q

′)2 = (D0q)2 . (19)

Therefore, the change of the LagrangianL under the transformations is

δL = − 1
2iδB0 . (20)

In order to prove the unitary invariance of the operator action, we discuss an infinitesimal
operator-valued transformation of the form

U = 1 + δ3 δ3 = −δ3+ . (21)

Using equations (11) and (12), we found thatδ3 must satisfy the following restrictions:

{q, δ3} = 0 (22)

{D0q, δ3} = 0 . (23)

From equations (21)–(23), we find thatδ3 satisfies the same algebra as that ofB0 which
is defined by equations (13)–(15). Now, we try to find the relationship betweenU andB0;
we look at it from a mathematical point of view. We know that (12) holds in this model
for any coordinateq, any permissive gauge potentialB0 and any permissive transformation
operatorU . In particular, it should hold wheṅq vanishes. Wheṅq vanishes, according to
(5) equation (12) changes into the following form:

UB0q = B0qU+ . (24a)

According to (11), and noticing thatq is any coordinate variable, equation (24a) then gives
the following relation:

[U, B0] = 0 . (24b)

Using equation (21), we found thatδ3 commutes withB0:

[δ3, B0] = 0 . (24c)

Then the first-order variation ofB0 is

δB0 = −d(δ3)

dt
. (25)
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Under an infinitesimal transformation, the first-order variation of the operator actionS is

δS = i 1
2

∫ ∞

−∞
dt

d

dt
δ3 . (26)

So whenδ3 vanishes att = ±∞, or more generally,δ3(∞) = δ3(−∞), the operator
action is invariant, i.e.

δS = 0 (27)

which means that our model has local operator gauge symmetry.
Now we discuss the Euler–Lagrange equation of motion. First we consider the equation

of motion ofq. Let q change infinitesimally arbitrarily, meanwhile,δq vanishes att = ±∞,
the first-order variation of the operator action is

δS =
∫ ∞

−∞
dt 1

2{D0D0q + ω2q, δq} . (28)

Becauseδq is an arbitrary variation ofq, we can letδq be proportional to the unit operator
in the Hilbert space. Therefore, the Hamilton action principle gives the following equation
of motion:

D0D0q + ω2q = 0 (29)

which is just the usual operator equation of motion.
If we let B0 change infinitesimally arbitrarily, using relation (14) and (15), the first-order

variation of the operator action is

δS = 1
2

∫ ∞

−∞
dt [q(D0q) − (D0q)q − i]δB0 . (30)

So the Hamilton action principle gives the following constraint:

[q, D0q] = i (31)

where D0q in (31) is the conjugated momentum conjugate to the coordinateq. Thus
equation (31) is just the usual canonical commutation relation.

Finally, we simply discuss the transformation operatorU and the gauge potentialB0

[9]. From Strocchi and Wightman’s work [8], we know that this transformation is very
restrictive. So isB0, but we can find a solution to them [9]. Using equations (21), (11)
and (12), we found thatδ3 satisfies the same algebra as that ofB0, which is defined by
(13)–(15). A possible solution ofB0 andδ3 has the following form:

eπ(D0q)q . (32)

Using relation (31), we can easily prove this. Therefore, the transformation operatorU

and the gauge potentialB0 that satisfy all the restrictions exist. In this model, an operator
gauge potential is just a constraint. It is not an independent dynamical argument. SoB0

could be expressed byq and q̇. Therefore we can letB0 be proportional to (32). From
equations (22) and (23), we found thatδ3 commutes withB0 which is consistent with our
preceding result (equation (24c)).

From the above discussions, we know that the canonical quantization condition can be
introduced spontaneously through the symmetry of the Hilbert space, and, in some sense,
the hypothesis about the symmetry of the Hilbert space is more fundamental and more
natural, and is thus very important in quantum theory.
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